Lower Bounds for the Smoothed Number of Pareto Optimal Solutions
نویسندگان
چکیده
In 2009, Röglin and Teng showed that the smoothed number of Pareto optimal solutions of linear multi-criteria optimization problems is polynomially bounded in the number n of variables and the maximum density φ of the semi-random input model for any fixed number of objective functions. Their bound is, however, not very practical because the exponents grow exponentially in the number d+1 of objective functions. In a recent breakthrough, Moitra and O’Donnell improved this bound significantly to O ( nφ ) . An “intriguing problem”, which Moitra and O’Donnell formulate in their paper, is how much further this bound can be improved. The previous lower bounds do not exclude the possibility of a polynomial upper bound whose degree does not depend on d. In this paper we resolve this question by constructing a class of instances with Ω((nφ)(d−log(d))·(1−Θ(1/φ))) Pareto optimal solutions in expectation. For the bi-criteria case we present a higher lower bound of Ω(n2φ1−Θ(1/φ)), which almost matches the known upper bound of O(nφ).
منابع مشابه
Lower Bounds for the Average and Smoothed Number of Pareto Optima
Smoothed analysis of multiobjective 0–1 linear optimization has drawn considerable attention recently. In this literature, the number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several l...
متن کاملThe Smoothed Number of Pareto Optimal Solutions in Bicriteria Integer Optimization
A well established heuristic approach for solving various bicriteria optimization problems is to enumerate the set of Pareto optimal solutions, typically using some kind of dynamic programming approach. The heuristics following this principle are often successful in practice. Their running time, however, depends on the number of enumerated solutions, which can be exponential in the worst case. ...
متن کاملThe Smoothed Number of Pareto-Optimal Solutions in Non-integer Bicriteria Optimization
Pareto-optimal solutions are one of the most important and well-studied solution concepts in multi-objective optimization. Often the enumeration of all Pareto-optimal solutions is used to filter out unreasonable trade-offs between different criteria. While in practice, often only few Pareto-optimal solutions are observed, for almost every problem with at least two objectives there exist instanc...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کامل